

 http://www.rajanaryal.com.np/

 http://hutrajshrestha.com.np/

Visit site For bsc csit syllabus/old

question/notes/solution

You can follow the site for more notes.

Our Social Links

 My Facebook Read my blog Follow me on twitter

 Follow me on instagram My youtube channel My Facebook

Note : if you found any mistake on solution

then please send us a message .

(You don’t need to write long answer. Some of

our answer is very long for better

understanding so summarize yourself)

Tribhuvan University
Institute of Science and Technology

http://www.rajanaryal.com.np/
http://hutrajshrestha.com.np/
http://www.facebook.com/rjnarl
http://www.rajanaryal.blogspot.com/
http://www.twitter.com/rajan_aryal1
http://www.instagram.com/awesome.u_r
https://www.youtube.com/channel/UChPLitqK68RPSZuBlNhZ_qQ
http://www.facebook.com/rjnarl

Bachelor of Computer Science and Information Technology
Course Title: Compiler Design and Construction

2071 (II)

1.) Define the compiler. Explain the phases of compiler.
Ans: A compiler is a program that takes a program written in a source language
and translates it into an equivalent low level program in a target language.

Phases of a Compiler
There are two major parts of a compiler: Analysis and Synthesis
– In analysis phase, an intermediate representation is created from the given
source program.
This phase (Source code analysis phase) is mainly divided into following three
parts:
· Lexical Analyzer
· Syntax Analyzer and
· Semantic Analyzer
– In synthesis phase, the equivalent target program is created from this
intermediate representation. This phase is divided into following three parts:
· Intermediate Code Generator
· Code Optimizer and
· Final Code Generator

Lexical Analyzer
Lexical Analyzer reads the source program in character by character ways and
returns the tokens of the source program.
Normally a lexical analyzer doesn’t return a list of tokens, it returns a token only
when the parser asks a token from it.
Lexical analyzer may also perform other auxiliary operation like removing
redundant white space, removing token separator (like semicolon) etc.

Example:
newval := oldval + 12
tokens : newval identifier

:= assignment operator
Oldval identifier
+ add operator
12 a number

Put information about identifiers into the symbol table.
Regular expressions are used to describe tokens (lexical constructs).
A (Deterministic) Finite State Automaton (DFA) can be used in the implementation
of a lexical analyzer.
Syntax Analyzer
A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the
given source program. Syntax analyzer is also called the parser. Its job is to analyze
the source program based on the definition of its syntax. It works in lock-step with
the lexical analyzer and is responsible for creating a parse-tree of the source code.
Ex: newval := oldval + 12

The syntax of a language is specified by a context free grammar (CFG). The rules in
a CFG are mostly recursive. A syntax analyzer checks whether a given program
satisfies the rules implied by a CFG or not.
– If it satisfies, the syntax analyzer creates a parse tree for the given program.
Semantic Analyzer
A semantic analyzer checks the source program for semantic errors and collects
the type information for the code generation.
– Type-checking is an important part of semantic analyzer.
Ex: newval := oldval + 12
• The type of the identifier newval must match with type of the expression

(oldval+12)

Synthesis phase
Intermediate Code Generation
An intermediate language is often used by many compiler for analyzing and
optimizing the source program. The intermediate language should have two
important properties:
– It should be simple and easy to produce.
– It should be easy to translate to the target program
A compiler may produce an explicit intermediate codes representing the source
program. These intermediate codes are generally machine (architecture)
independent. But the level of intermediate codes is close to the level of machine
codes.
Ex:

newval := oldval * fact + 12
id1:= id2 * id3 + 12
temp1 = intTofloat(12)
temp2 = id2 * id3
temp3 = temp1 + temp2
id1 = temp3

Code Optimization
The process of removing unnecessary part of a code is known as code
optimization. Due to code optimization process it decreases the time and space
complexity of the program. i.e Detection of redundant function calls
Detection of loop invariants Common sub-expression elimination Dead code
detection and elimination
Ex:
temp1 = intTofloat (12) temp1 = id2 * id3
temp2 = id2 * id3 id1 = temp1 + 12
temp3 = temp1 + temp2
id1 = temp3

Code Generation
This involves the translation of optimized intermediate code into the target
language
The target code is normally is a relocatable object file containing the machine or
assembly codes.
Ex:
(Assume that we have an architecture with instructions whose at least one of its
operands is a machine register)
MOVE id2, R1

MULT id3, R1
ADD #1, R1
MOVE R1, id1

2.) Design a lexical analyzer generator and explain it.

Ans: First, we define regular expressions for tokens; then we convert them into a
DFA to get a lexical analyzer for our tokens.
Algorithm1:
Regular Expression → NFA → DFA (two steps: first to NFA, then to DFA)
Algorithm2:
Regular Expression → DFA (directly convert a regular expression into a DFA)

Subset Construction Algorithm
put ε-closure(s0) as an unmarked state in to Dstates
while there is an unmarked state T in Dstates do
mark T
for each input symbol a ∈ Σ do
U = ε-closure(move(T,a))
if U is not in Dstates then
add U as an unmarked state to Dstates
end if
Dtran[T,a] = U
end do
end do
The algorithm produces:
Dstates: Dstates is the set of states of the new DFA consisting of sets of states of
the NFA

Dtran: Dtran is the transition table of the new DFA
Subset Construction Example (NFA to DFA)

S0 is the start state of DFA since 0 is a member of S0= {0, 1, 2, 4, 7}
S1 is an accepting state of DFA since 8 is a member of S1 = {1, 2, 3, 4, 6, 7, 8}

this is final DFA

Conversion from RE to DFA Example1

Note: - the start state of DFA is firstpos (root)
The accepting states of DFA are all states containing the position of #
For the RE --- (a | b) * a
Its augmented regular expression is;
The syntax tree is:
Now we calculate followpos ,
followpos(1) = {1,2,3}
followpos(2) = {1,2,3}
followpos(3) = {4}
followpos(4) = {}

Now

Note:- Accepting states=states containing position of i.e. 4.

3.) Differentiate between top-down parsing and bottom-up parsing.

Ans:

5.) Explain the dynamic programming code generation algorithm with

example.

Ans:

6.) What do you mean by code optimization? Explain the basic blocks

and their optimization.

Ans: The code optimization in the synthesis phase is a program

transformation technique, which tries to improve the intermediate code by
making it consume fewer resources (i.e. CPU, Memory) so that faster-
running machine code will result. Compiler optimizing process should meet
the following objectives:

 The optimization must be correct, it must not, in any way, change the
meaning of the program.

 Optimization should increase the speed and performance of the
program.

 The compilation time must be kept reasonable.
 The optimization process should not delay the overall compiling

process.

There are two types of basic block optimizations. They are :

Ø Structure-Preserving Transformations
Ø Algebraic Transformations

Structure-Preserving Transformations:
The primary Structure-Preserving Transformation on basic blocks are:

Ø Common sub-expression elimination
Ø Dead code elimination
Ø Renaming of temporary variables
Ø Interchange of two independent adjacent statements.

Common sub-expression elimination:

Common sub expressions need not be computed over and over again.

Instead they can be computed once and kept in store from where it‟s referenced.

Example:

a: =b+c
b: =a-d
c: =b+c
d: =a-d

The 2nd and 4th statements compute the same expression: b+c and a-d
Basic block can be transformed to

a: = b+c
b: = a-d
c: = a
d: = b

7.) What are the generic issues in the design of code generators?
Explain.
Ans:
Input to the code generator:

The input to the code generator is intermediate representation together with the

information in the symbol table. What type of input postfix, three-address, dag or

tree?

Target Program:

Which one is the out put of code generator: Absolute machine code (executable

code), Relocatable machine code (object files for linker), Assembly language

(facilitates debugging), Byte code forms for interpreters (e.g. JVM)

Target Machine:

Implementing code generation requires thorough understanding of the target

machine architecture and its instruction set.

Instruction Selection:

Instruction selection is important to obtain efficient code.

Register Allocation:

Proper utilization of registers improve code efficiency

Choice of Evaluation order:

The order of computation effect the efficiency of target code.

8.) What are the compiler construction tools? Explain.

Ans: Some commonly used compiler-construction tools. Include:

1. Parser generators.
2. Scanner generators.
3. Syntax-directed translation engines.
4. Automatic code generators.
5. Data-flow analysis engines.
6. Compiler-construction toolkits.

Parser Generators

Input: Grammatical description of a programming language
Output: Syntax analyzers.

Parser generator takes the grammatical description of a programming
language and produces a syntax analyzer.

Scanner Generators

Input: Regular expression description of the tokens of a language
Output: Lexical analyzers.
Scanner generator generates lexical analyzers from a regular expression
description of the tokens of a language.

Syntax-directed Translation Engines

Input: Parse tree.
Output: Intermediate code.
Syntax-directed translation engines produce collections of routines that
walk a parse tree and generates intermediate code.

Automatic Code Generators

Input: Intermediate language.
Output: Machine language.
Code-generator takes a collection of rules that define the translation of
each operation of the intermediate language into the machine language
for a target machine.

Data-flow Analysis Engines

Data-flow analysis engine gathers the information, that is, the values
transmitted from one part of a program to each of the other parts. Data-
flow analysis is a key part of code optimization.

Compiler Construction Toolkits

The toolkits provide integrated set of routines for various phases of
compiler. Compiler construction toolkits provide an integrated set of
routines for construction of phases of compiler.

9.) Explain the principle sources of code optimization with example.

Ans: We distinguish local transformations—involving only statements in a single
basic block—from global transformations. A basic block computes a set of
expressions: A number of transformations can be applied to a basic block without
changing the expressions computed by the block.

 1. Common Sub expressions elimination;

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

 2. Copy Propagation;

3. Dead-Code elimination;

4. Constant Folding.

_ _ __ _ _

_

10.) Differentiate between C compiler and Pascal compiler.

Ans:

C Language Pascal Language

C language was found by Dennis

Ritchie in 1972.

Pascal language was found by Niklaus

Wirth in 1969. Name of this language is

kept Pascal in the honor of „one of the great

french mathematician & philosopher named

“Blaise Pascal“„.

C language is influenced by ALGOL 68,

BCPL, Assembly , Fortran, PL/I. etc.

This Language was influenced by ALGOL

60.

In C language, semicolon (;) is used

as statement terminator.

In Pascal language, semicolon (;) is used

as statement separator.

/* comment */, // comment, are used for

comments.

{comment} – curly braces and (* comment

*) are used for comments.

return, break and continue can be used in

C.

return, break and continue is not used in

Pascal.

http://freefeast.info/personality-motivation/famous_it_personalities/dennis-ritchie-father-of-the-%E2%80%98c%E2%80%99-and-co-creator-of-unix/
http://freefeast.info/personality-motivation/famous_it_personalities/dennis-ritchie-father-of-the-%E2%80%98c%E2%80%99-and-co-creator-of-unix/
http://freefeast.info/general-it-articles/difference-between-break-and-continue-break-vs-continue/
http://freefeast.info/general-it-articles/difference-between-break-and-continue-break-vs-continue/

C language is case-sensitive. Pascal language is not case sensitive.

C does not have Boolean data type but

have relational operators.

Pascal have Boolean data type.

To define constant in C, #define is

used.For ex : #define PI=3.14 ;

To define constant in Pascal, constant is

used.For ex : constant PI = 3.14

Variable declaration in c :For ex : int x;

int x , y ;

Variable declaration in PascalFor ex : var x

: integer ;

var x, y : integer;

Pointer variable declaration in C :For ex

: int *x;

Pointer variable declaration in Pascal :For

ex : x:^integer

In C language, no such specific keyword is

used in beginning or ending

but “{“ and “}” are used for block of

statements.

In Pascal, program starts with the keyword

„program‟ and then

follows begin and end keywords.

Tribhuvan University
Institute of Science and Technology

Bachelor of Computer Science and Information Technology
Course Title: Compiler Design and Construction

2071

1.) Explain the various phases of compiler in detail with practical

example.

Ans: View in 2071(II) q no. 1

2.) Explain about design of lexical analyzer generator with its

suitable diagram.

Ans: View in 2071(II) q no. 2

3.) What are the problem with top down parsers ? Explain the LR

parsing algorithm.

Ans: Problems with the Top-Down Parser

1. Only judges grammatically

2. Stops when it finds a single derivation.

3. No semantic knowledge employed.

4. No way to rank the derivations.

5. Problems with left-recursive rules.

6. Problems with ungrammatical sentences.

LR PARSER

In computer science, LR parsers are a type of bottom-up parser that
efficiently handle deterministic context-free languages in guaranteed linear
time. The LALR parsers and the SLR parsers are common variants of LR
parsers. LR parsers are often mechanically generated from a formal
grammar for the language by a parser generator tool. They are widely used
for the processing of computer languages.

The name LR is an initialism. The L means that the parser reads input text
in one direction without backing up; that direction is typically Left to right
within each line, and top to bottom across the lines of the full input file.
(This is true for most parsers.) The R means that the parser produces
a Rightmost derivation in reverse: it does a bottom-up parse - not a top-
down LL parse or ad-hoc parse. The name LR is often followed by a
numeric qualifier, as in LR(1) or sometimes LR(k). To avoid backtracking or
guessing, the LR parser is allowed to peek ahead
at klookahead input symbols before deciding how to parse earlier symbols.
Typically k is 1 and is not mentioned. The name LR is often preceded by
other qualifiers, as in SLR and LALR.

LR parsers are deterministic; they produce a single correct parse without
guesswork or backtracking, in linear time. This is ideal for computer
languages, but LR parsers are not suited for human languages which need
more flexible but inevitably slower methods. Some methods which can
parse arbitrary context-free grammars (e.g., Cocke-Younger-
Kasami, Earley, GLR) have worst-case performance of O(n3) time. Other
methods which backtrack or yield multiple parses may even take
exponential time when they guess badly.

The above properties of L, R, and k are actually shared by all shift-reduce
parsers, including precedence parsers. But by convention, the LR name
stands for the form of parsing invented by Donald Knuth, and excludes the
earlier, less powerful precedence methods (for example Operator-
precedence parser).LR parsers can handle a larger range of languages

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Bottom-up_parsing
https://en.wikipedia.org/wiki/Deterministic_context-free_language
https://en.wikipedia.org/wiki/LALR_parser
https://en.wikipedia.org/wiki/SLR_parser
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Parser_generator
https://en.wikipedia.org/wiki/Computer_language
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Rightmost_derivation
https://en.wikipedia.org/wiki/Bottom-up_parsing
https://en.wikipedia.org/wiki/Top-down_parsing
https://en.wikipedia.org/wiki/Top-down_parsing
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Parsing#Lookahead
https://en.wikipedia.org/wiki/Symbol_(formal)
https://en.wikipedia.org/wiki/CYK_algorithm
https://en.wikipedia.org/wiki/CYK_algorithm
https://en.wikipedia.org/wiki/Earley_parser
https://en.wikipedia.org/wiki/GLR_parser
https://en.wikipedia.org/wiki/Shift-reduce_parser
https://en.wikipedia.org/wiki/Shift-reduce_parser
https://en.wikipedia.org/wiki/Simple_precedence_parser
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Operator-precedence_parser
https://en.wikipedia.org/wiki/Operator-precedence_parser

and grammars than precedence parsers or top-down LL parsing.This is
because the LR parser waits until it has seen an entire instance of some
grammar pattern before committing to what it has found. An LL parser has
to decide or guess what it is seeing much sooner, when it has only seen
the leftmost input symbol of that pattern. LR is also better at error reporting.
It detects syntax errors as early in the input stream as possible.

5.) What are the different issues in the design of code generator ?

Explain with example about the optimization of basic blocks.
Ans: Input to the code generator:

The input to the code generator is intermediate representation together with the

information in the symbol table. What type of input postfix, three-address, dag or

tree?

Target Program:

Which one is the out put of code generator: Absolute machine code (executable

code), Relocatable machine code (object files for linker), Assembly language

(facilitates debugging), Byte code forms for interpreters (e.g. JVM)

Target Machine:

Implementing code generation requires thorough understanding of the target

machine architecture and its instruction set.

Instruction Selection:

Instruction selection is important to obtain efficient code.

Register Allocation:

Proper utilization of registers improve code efficiency

Choice of Evaluation order:

The order of computation effect the efficiency of target code.

There are two types of basic block optimizations. They are:
Ø Structure-Preserving Transformations
Ø Algebraic Transformations

Structure-Preserving Transformations:
The primary Structure-Preserving Transformation on basic blocks are:

Ø Common sub-expression elimination
Ø Dead code elimination
Ø Renaming of temporary variables
Ø Interchange of two independent adjacent statements.

Common sub-expression elimination:

https://en.wikipedia.org/wiki/LL_parsing

Common sub expressions need not be computed over and over again.

Instead they can be computed once and kept in store from where it‟s referenced.

Example:

a: =b+c
b: =a-d
c: =b+c
d: =a-d

The 2nd and 4th statements compute the same expression: b+c and a-d
Basic block can be transformed to

a: = b+c
b: = a-d
c: = a
d: = b

6.) What are the main issues involved in designing lexical analyzer?

Mention the various error recovery strategies for a lexical analyzer.
Ans:

7.) Define a context free grammar. What are the component of

context free grammar? Explain.
Ans:

A context-free grammar (CFG) is a set of recursive rewriting rules (or productions)

used to generate patterns of strings.

A CFG consists of the following components:

 a set of terminal symbols, which are the characters of the alphabet that

appear in the strings generated by the grammar.

 a set of nonterminal symbols, which are placeholders for patterns of terminal

symbols that can be generated by the nonterminal symbols.

 a set of productions, which are rules for replacing (or rewriting) nonterminal

symbols (on the left side of the production) in a string with other

nonterminal or terminal symbols (on the right side of the production).

 a start symbol, which is a special nonterminal symbol that appears in the

initial string generated by the grammar.

8.) What are the various issues of code generator ? Explain the benefits

of intermediate code generation.
Ans:

: Input to the code generator:

The input to the code generator is intermediate representation together with the

information in the symbol table. What type of input postfix, three-address, dag or

tree?

Target Program:

Which one is the out put of code generator: Absolute machine code (executable

code), Relocatable machine code (object files for linker), Assembly language

(facilitates debugging), Byte code forms for interpreters (e.g. JVM)

Target Machine:

Implementing code generation requires thorough understanding of the target

machine architecture and its instruction set.

Instruction Selection:

Instruction selection is important to obtain efficient code.

Register Allocation:

Proper utilization of registers improve code efficiency

Choice of Evaluation order:

The order of computation effect the efficiency of target code.

9.) Explain the peephole organization. Write a three address code

for the expression
r; = 7*3+9.

Ans: A statement-by-statement code-generations strategy often produces target

code that contains redundant instructions and suboptimal constructs. The quality of

such target code can be improved by applying “optimizing” transformations to the

target program.

A simple but effective technique for improving the target code is peephole

optimization, a method for trying to improving the performance of the target

program by examining a short sequence of target instructions (called the peephole)

and replacing these instructions by a shorter or faster sequence, whenever possible.

The peephole is a small, moving window on the target program. The code in

the peephole need not be contiguous, although some implementations do require

this. It is characteristic of peephole optimization that each improvement may

spawn opportunities for additional improvements.

Characteristics of peephole optimizations:

Redundant-instructions elimination

Flow-of-control optimizations

Algebraic simplifications

Use of machine idioms

Unreachable

Redundant Loads And Stores:

If we see the instructions sequence

(1) MOV R0,a

(2) MOV a,R0

we can delete instructions (2) because whenever (2) is executed. (1) will

ensure that the value of a is already in register R0.If (2) had a label we could not be

sure that (1) was always executed immediately before (2) and so we could not

remove (2).

Flows-Of-Control Optimizations:

The unnecessary jumps can be eliminated in either the intermediate code or

the target code by the following types of peephole optimizations. We can replace

the jump sequence

 goto L1

….

 L1: gotoL2 (d)

by the sequence

goto L2

….

 L1: goto L2

If there are now no jumps to L1, then it may be possible to eliminate the

statement L1:goto L2 provided it is preceded by an unconditional jump

.Similarly, the sequence

 if a < b goto L1

….

 L1: goto L2 (e)

can be replaced by

If a < b goto L2

….

 L1: goto L2

Ø Finally, suppose there is only one jump to L1 and L1 is preceded by an

unconditional goto. Then the sequence

 goto L1

 L1: if a < b goto L2 (f) L3:

 may be replaced by

 If a < b goto L2

goto L3

 …….

 L3:

 While the number of instructions in(e) and (f) is the same, we sometimes

skip the unconditional jump in (f), but never in (e).Thus (f) is superior to (e) in

execution time

Algebraic Simplification:

There is no end to the amount of algebraic simplification that can be

attempted through peephole optimization. Only a few algebraic identities occur

frequently enough that it is worth considering implementing them. For example,

statements such as

x := x+0 or

x := x * 1

are often produced by straightforward intermediate code-generation algorithms,

and they can be eliminated easily through peephole optimization.

Use of Machine Idioms:

The target machine may have hardware instructions to implement certain

specific operations efficiently. For example, some machines have auto-increment

and auto-decrement addressing modes. These add or subtract one from an operand

before or after using its value. The use of these modes greatly improves the quality

of code when pushing or popping a stack, as in parameter passing. These modes

can also be used in code for statements like i : =i+1.

i:=i+1 → i++

i:=i-1 → i- -

Unreachable Code:

Another opportunity for peephole optimizations is the removal of

unreachable instructions. An unlabeled instruction immediately following an

unconditional jump may be removed. This operation can be repeated to eliminate a

sequence of instructions. For example, for debugging purposes, a large program

may have within it certain segments that are executed only if a variable debug is 1.

10.) Differentiate between Pascal compiler and C++ compiler.
Ans: Pascal is a language indeed. At least it is easier to read than C++.

Besides readability, two main differences: C++ has been more portable than Pascal,

because implementations differed less. C++ has become an ANSI standard well before

Pascal was standardized, which also helped portability a lot.

Secondly, there is nothing you can do in assembly but not in C because the language syntax

precludes this. C++ allows much more low-level programming than Pascal, as the Pascal

syntax simply doesn't allow some constructs.

C++ is also well standardized, while I am not even sure if an Object Pascal standardization

exists.

If you want to write portable programs, or programs a large community is able to maintain,

use C. If you just program for fun, no system programming and educational purposes,

Pascal has not many drawbacks.

Tribhuvan University
Institute of Science and Technology

Bachelor of Computer Science and Information Technology
Course Title: Compiler Design and Construction

2069

1.) What do you mean by compiler? Explain the semantic analysis

phase of compiler construction.

Ans: : A compiler is a program that takes a program written in a source language
and translates it into an equivalent low level program in a target language.

Semantic Analysis Phae:
Lexical Analyzer
Lexical Analyzer reads the source program in character by character ways and
returns the tokens of the source program.
Normally a lexical analyzer doesn’t return a list of tokens, it returns a token only
when the parser asks a token from it.
Lexical analyzer may also perform other auxiliary operation like removing
redundant white space, removing token separator (like semicolon) etc.

Example:
newval := oldval + 12
tokens : newval identifier

:= assignment operator
Oldval identifier
+ add operator
12 a number

Put information about identifiers into the symbol table.
Regular expressions are used to describe tokens (lexical constructs).
A (Deterministic) Finite State Automaton (DFA) can be used in the implementation
of a lexical analyzer.
Syntax Analyzer
A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the
given source program. Syntax analyzer is also called the parser. Its job is to analyze
the source program based on the definition of its syntax. It works in lock-step with
the lexical analyzer and is responsible for creating a parse-tree of the source code.
Ex: newval := oldval + 12

The syntax of a language is specified by a context free grammar (CFG). The rules in
a CFG are mostly recursive. A syntax analyzer checks whether a given program
satisfies the rules implied by a CFG or not.
– If it satisfies, the syntax analyzer creates a parse tree for the given program.
Semantic Analyzer
A semantic analyzer checks the source program for semantic errors and collects
the type information for the code generation.
– Type-checking is an important part of semantic analyzer.
Ex: newval := oldval + 12
• The type of the identifier newval must match with type of the expression

(oldval+12)

2.) Why are regular expressions used in token specification? Write

the regular expression to specify the identifier like in C.

Ans:

 Regular expressions are notation for specifying patterns.

• Each pattern matches a set of strings.

• Regular expressions will serve as names for sets of strings.

• Strings and Languages:

• The term alphabet or character class denotes any finite set of symbols.

• e.g., set {0,1} is the binary alphabet.

• The term sentence and word are often used as synonyms for the term string.

• The length of a string s is written as |s| - is the number of occurrences of symbols in s.

• e.g., string “banana” is of length six.

• The empty string denoted by ε – length of empty string is zero.

• The term language denotes any set of strings over some fixed alphabet.

• e.g., {ε} – set containing only empty string is language under φ.

• If x and y are strings, then the concatenation of x and y (written as xy) is the string formed

by appending y to x. x = dog and y = house; then xy is doghouse.

• sε = εs = s.

• s
0
 = ε, s

1
 = s, s

2
 = ss, s

3
 = sss, … so on.

4.) Consider the grammar :

S aSbS | bSaS | ɛ
a.)Show that this grammar is ambiguous by constructing two

different leftmost derivations for sentence abab.

b.) Construct the corresponding rightmost derivations for abab.

c.)Construct the corresponding parse trees for abab.
Ans:

5.) Consider the grammar :

E→E+T | T

T→T*F|F

F→ (E) | id
a.) Show steps of shift-reduce parsing for the input string id+id*id.

b.) Identify conflicts during the parsing

6.) Describe the L-attributed definitions. How L-attributed

definitions are evaluated?

Ans:

9.) Discuss the issues in design of simple code generator.

Ans: View in 2071(II) q no. 7

10.) Define the following optimization techniques:

a.) Unreachable code elimination

b.) Flow-of-control optimization
Ans:

a.) Flows-Of-Control Optimizations:

The unnecessary jumps can be eliminated in either the intermediate code or

the target code by the following types of peephole optimizations. We can replace

the jump sequence

 goto L1

….

 L1: gotoL2 (d)

by the sequence

goto L2

….

 L1: goto L2

If there are now no jumps to L1, then it may be possible to eliminate the

statement L1:goto L2 provided it is preceded by an unconditional jump

.Similarly, the sequence

 if a < b goto L1

….

 L1: goto L2 (e)

can be replaced by

If a < b goto L2

….

 L1: goto L2

Ø Finally, suppose there is only one jump to L1 and L1 is preceded by an

unconditional goto. Then the sequence

 goto L1

 L1: if a < b goto L2 (f) L3:

 may be replaced by

 If a < b goto L2

goto L3

 …….

 L3:

 While the number of instructions in(e) and (f) is the same, we sometimes

skip the unconditional jump in (f), but never in (e).Thus (f) is superior to (e) in

execution time

b.) Unreachable Code:

Another opportunity for peephole optimizations is the removal of

unreachable instructions. An unlabeled instruction immediately following an

unconditional jump may be removed. This operation can be repeated to eliminate a

sequence of instructions. For example, for debugging purposes, a large program

may have within it certain segments that are executed only if a variable debug is 1.

 Tribhuvan University

Institute of Science and Technology
Bachelor of Computer Science and Information Technology

Course Title: Compiler Design and Construction
2068

1. Explain the phase of a compiler with block diagram. (6)
Ans: View in 2071(II) q no. 1

2. Define token, pattern and lexeme with suitable example. How
input buffering can be implemented for scanner, explain.
Ans: -A token is a logical building block of language. They are the sequence of
characters having a collective meaning.
Eg: identifier, keywords etc
-A sequence of input characters that make up a single token is called a lexeme.
A token can represent more than one lexeme.
Eg: abc, 12 etc
In the statement
Float pi=3.1415
The variable pi is called a lexeme for the token ‘identifier’
-Patterns are the rules for describing whether a given lexeme belonging to a token
or not.

Regular expressions are widely used to specify patterns.
Input Buffering:

Many times, a scanner has to look ahead several characters from the current

character in order to recognize the token.

For example int is keyword in C, while the term inp may be a variable name. When
the character ‘i’ is encountered, the scanner cannot decide whether it is a keyword
or a variable name until it reads two more characters.
In order to efficiently move back and forth in the input stream, input buffering is
used.

Fig: - An input buffer in two halves

Here, we divide the buffer into two halves with N-characters each.
Rather than reading character by character from file we read N input character at
once. If there are fewer than N characters in input eof marker is placed.
There are two pointers (see in above fig.) the portion between lexeme pointer and
forward pointer is current lexeme. Once the match for pattern is found, both the
pointers points at the same place and forward pointer is moved.

3. Give the regular expression (0+1)*011, construct a DFA equivalent
to this regular expression computing follow pos ().
Ans:

4. Explain the role of the parser. Write an algorithm for non-recursive
predictive pursing. (6)
Ans: The Role of a Parser: The second phase of the compilation process is syntax

analysis commonly known as parsing. A parser obtains the tokens from the lexical

analyzer and analyzes syntactically according to the grammar of the source

language whether the string can be generated or not from the grammar i.e. the

parser works with the lexical analyzer as shown in figure below.

Figure: Position of parser in compiler model

A syntax analyzer (parser) is to analyze the source program based on the definition

of its syntax. It works in lock-up step with the lexical analyzer (scanner) and

responsible for creating a parse tree out of the source code.

A parser implements a Context Free Grammar.

Besides the checking of syntax the parser is responsible to report the syntax

errors.

A parser is also responsible to invoke semantic actions

- for static semantics checking e.g. type checking of expressions, functions

etc

- for syntax directed translation of the source code to an intermediate

representation

- The possible intermediate representations outputs are

Abstract syntax tree

control-flow graphs (CFGs) with triples, three address code or register

transfer list notations

5. Construct the grammar
E → E+T|T
T → T*F|F
F→ (E) |id
Compute the complete LR(0) collection of item set from above

grammar.

Ans:

8. What do you mean by S-attributed definition and how they are
evaluated? Explain with example.

Ans:

9. What do you mean by three-code representation? Explain with

example.

Ans:

10. How next-use information is useful in code-generation? Explain
the steps involved on computing next-use information.
Ans: Next-use information:

