Bachelor of Science in Computer Science and Information Technology Teachers Orientation Program
 Paush 1-2, 2066

Course Title: Theory of Computation

Course no: CSC-251
Full Marks: $80+20$
Credit hours: 3
Pass Marks: $32+8$

Nature of course: Theory (3 Hrs.) + Tutorials(3 Hrs)
Course Synopsis: Deterministic and non-deterministic finite state machines, regular expressions, languages and their properties. Context free grammars, push down automata, Turing machines and computability, undecidable and intractable problems, and Computational complexity.

Goal: To gain understanding of the abstract models of computation and formal language approach to computation.

Course contents:

Unit 1:

14 Hrs.
1.1 Review of Mathe matical Preliminaries: 1 Hrs.

- Quick review of Sets, Logic, Functions, Relations, Languages, Proofs.
1.2 Finite Automata 7 Hrs
- Introduction of Finite State Machine
- Deterministic Finite Automata(DFA): Formal Definition, Notation of DFA, Extending the transition function of DFA, Language accepted by DFA
- Non-deterministic Finite Automata(NFA): Formal Definition, Notation, Extended transition function of NFA, Language of NFA, Equivalence of Deterministic and Non-deterministic Finite Automata-The Subset construction method, Theorems related to equivalence of DFA and NFA
- Finite Automata with Epsilon-Transition: Formal Definition, Notation, Extended Transition function of epsilon transition, Removing epsilon transition from epsilon NFA. Construction of DFA from epsilon NFA.
- Finite State Machine with output - Moore machine and Mealy machinegeneral concepts.

1.3 Regular Expressions and Languages
 6 Hrs

- Introduction to regular operators, regular languages, Precedence of regular operators
- Regular expressions, Formal definition of regular expressions,
- Equivalence of Regular Expressions and Finite Automata. Theorem for conversion from regular expression to epsilon FA.
- Application of regular expressions
- Algebraic Laws for Regular Expressions.
- Properties of Regular Languages
- Pumping Lemma and its Application
- Closure properties of regular languages with proofs.
- Decision properties of regular languages.- general concepts of decision properties, Minimization of Finite State Machine.

Unit 2:

11 Hrs.

2.1 Context-Free Grammar

6 Hrs

- Introduction to CFG, using grammar rules to describe a language, formal definition of CFG.
- Derivation using grammar - Bottom up and Top down approach, Leftmost and Right-most derivation.
- The language of a Grammar, sentential form, derivation-tree, construction of parse-tree for a string from a grammar.
- Ambiguous grammar, inherent ambiguity, regular grammar.
- Equivalence of regular grammar and finite automata.
- Simplification of CFG.
- Normal Forms: Chomsky and Greibach Normal forms.
- Closure properties of Context Free Languages
- Pumping Lemma for Context Free Language - proving a language to be non-context free.

2.2 Push Down Automata (PDA)
 5 Hrs

- Introduction, deterministic and non-deterministic PDA. Formal Definitions.
- Moves of PDA, Graphical representation of PDA, Instantaneous Description.
-Computation tree for PDA processing the input strings.
- Language of PDA- Acceptance by final state and by empty stack
- Conversion of PDA accepting by final state to accepting by empty stack and vice versa.(theorems)
-Equivalence of PDA and CFG - conversion from CFG to PDA and vice - versa

Unit 3:
10 Hrs.

Turing Machines

- Introduction to Turing Machines, Formal Definitions, Transition Diagram and transition table, Language of TM.
- Roles of TM - language recognizer, concept of TM as computing a function and enumerator of strings of languages.
- Computation by Turing Machines- Programming techniques viz. storage in a state, TM with multiple tracks, subroutines.
- Variants of Turing Machines - Multi-tape Turing Machine, Non-deterministic Turing Machines, Equivalence of one tape and multi-tape TM(related theorems), Concepts of Turing Enumerable Languages.
- Church's Thesis and Algorithm
- Universal Turing Machines
- Concept of Halting Problems
- Turing Machines and Computers- Simulating a TM by computer, simulating a real computer by a Turing Machine.

Unit 4:

10 Hrs.
4.1 Undecidability 6 Hrs

- Concept of Recursive and Recursively Enumerable Languages.
- Encoding of Turing Machine, the diagonalization language, complements of RE language
- Proof of Universal Language theorem.
- Concepts of Unrestricted Grammars and Chomsky Hierarchy.
- Unsolvable Problems by Turing Machines.
- Undecidable Problems, Post's Correspondence Problems.

4.2 Computational Complexity and Intractable Problems

- Measuring Complexity, Class P and Class NP
- Problems solvable in Polynomial time- Kruskal's algorithm for minimum weight spanning tree.
- Non- deterministic Polynomial time- Problem TSP
- NP-Completeness and Problem Reduction
- NP-Complete Problems
- Introduction to Satisfiability Problem
- Normal Forms for Boolean Expressions

Text Book:

John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Second Edition, Addison-Wesley, 2001. ISBN: 81-7808-347-7

References:

1. Efim Kinber, Carl Smith, Theory of Computing: A Gentle introduction, Prentice- Hall, 2001. ISBN: 0-13-027961-7.
2. John Martin, Introduction to Languages and the theory of computation, $3^{\text {rd }}$ Edition, Tata McGraw Hill, 2003, ISBN:0-07-049939-X
3. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, $2^{\text {nd }}$ Edition, Prentice Hall, 1998.

Home work Assignments:

Homework assignments will be given through out the semester covering the lecture materials in each unit. The homework assignment will cover the 30% of the internal evaluation.

Pre-requisite: Discrete Mathematics, Fundamentals of Computer Programming and Data structure \& algorithms.

Evaluation and Grading:

The evaluation and grading includes the 20% weitage for homework assignments and 2 mid term exam and 80% weitage for final semester exam. The grading of the 20% internal evaluation will be as:

Homework assignment: $\quad 30 \% \quad$ (6 marks)
First Mid-term exam: 30\% (6 marks)
Second Mid-term exam: $\quad 40 \%$ (8 marks)
Homework assignment will be given in at least each weekend.

Bachelor of Science in Computer Science and Information Technology Model Question 2009

Course Title: Theory of Computation

Course No: CSC -251
Credit Hours: 3
F.M: 80
P.M: 32

Attempt all questions

Group $A[8 \times 4=32]$

1. Differentiate the DFA and NFA with suitable examples.
2. Draw DFA for the following languages over $\{0,1\}$
a) All strings with even no of $o^{\text {'s }}$ and even no if 1 's
b) All strings of length at most 4 .
3. Prove that NDFA $=$ DFA
4. Convert the follo wing grammar into Chomsky Normal from.

$$
S \rightarrow A A C, A \rightarrow a A b|\in, C \rightarrow a C| a
$$

5. How a CFG can be converted into PDA? Convert the follo wing CFG into PDA.
$S \rightarrow a A B, A \rightarrow a S|b S| a, B \rightarrow S a|S b| b$
6. Describe about the Universal Turing Machine.
7. Construct a Turing Machine accepting a language of palindro me over $\{a, b\}^{*}$ with each string of even length.
8. Explain about recursive and recursively enumerable languages

$$
\text { Group B:[} 6 \times 8=48]
$$

9. Define a NFA with epsilon transition. Explain how a \in-NFA is converted into DFA? Convert the follo wing $\in-$ NFA into equivalent DFA.

10. State and prove the pumping lemma for regular language. Show that the language $L=\left\{a^{m} b^{m} \mid m \geq 1\right\}$ is not a regular language.
11. Define Context Free Grammar. Given the following grammar,
$S \rightarrow a B \mid b A$
$A \rightarrow a|a S| b A A$
$B \rightarrow b|b S| a B B \mid \in$
For the string aabbbaabaaab, find the left-most, right-most derivation and construct a parse tree.
12. Define the PDA and its language with suitable example. Explain how a PDA accepting by empty stack can be converted in to PDA accepting by Final stack?
13. Explain multi-tape Turing Machine. Show that every language accepted by a multi-tape Turing Machine is recursively enumerable.
14. Explain the Chomsky hierarchy of the languages.

End

Marks Distribution:

1. Unit 1: $24-28$ Marks (2 to 3 questions in Group A and 2 questions in Group B)
2. Unit 2: 20-24 Marks (1 to 2 questions in Group A and 2 questions in Group B)
3. Unit 3:16 Marks (2 questions in Group A and 1 question in Group B)
4. Unit 4: $12-16$ Marks (1 to 2 questions in Group A and 1 question in Group B)

Note: Each questions may be asked by breaking down into more then one questions.

Subject Expert:

1. Hemanta GC Patan Multiple Campus / ASCOL

Participants

1. Dhiraj Kedar Pandey Siddanath Science Campus, Mahaendra nagar
2. Kamal Raj Sharma

St. Xavier College, Kath mandu

